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Abstract

When a new evolutionary dynamic is identified, researchers
often struggle to understand its long-term effects on evolu-
tionary outcomes. Evolutionary prediction is always chal-
lenging, as subtle nuances of dynamics can interact in un-
predictable ways. Digital evolution systems, however, pro-
vide an empirical alternative to prediction: automated replay
experiments can be conducted in large numbers to measure
a real distribution of outcomes from a given starting point.
Changes in distributions over time can help us understand
the long-term implications of seemingly minor events dur-
ing evolution. We apply this technique to “adaptive momen-
tum”, a new framework that explains how phenomena like
selective sweeps can temporarily weaken selection and en-
hance the likelihood of crossing deleterious fitness valleys.
We show that deleterious mutations along the leading edge of
a selective sweep can have an outsized influence on the evolu-
tionary fate of a population. Indeed, we see that evolutionary
potential to cross new deleterious valleys drastically increases
during selective sweeps. Moreover, each valley crossing initi-
ates a new sweep, increasing the potential for further discov-
eries; this increased potential subsides only once all sweeps
have concluded. While we still have much to learn about both
adaptive momentum and the role of history in evolution, this
work identifies important evolutionary dynamics at play and
hones our tools for further studies.

Introduction

Innovations in science and technology periodically create
opportunities to conduct experimental studies that were pre-
viously relegated to the realm of thought experiments. This
shift occurred with Stephen Jay Gould’s idea of “replaying
the tape of life” — starting evolution over again to see if we
would arrive at similar outcomes (Gould, |1990). Previous
researchers have brought this thought experiment into real-
ity by leveraging microbial populations that can be frozen
and then revived (Blount et al., 2018) or digital populations
that can be saved and loaded at will (Ferguson and Ofrial
2023). By restarting evolution from different time points in
an evolved population’s history, researchers have begun to
formalize analytic replay experiments to test hypotheses on
historical contingency. Below we explore how these tech-
niques can be expanded to develop a deeper understanding

of evolutionary dynamics, in this case exploring the concept
of “adaptive momentum”.

Replay Experiments and Evolutionary Prediction

Traditional evolutionary biology is often focused on improv-
ing our ability to predict evolutionary outcomes or under-
stand why evolutionary history played out the way it did.
Prediction can be especially difficult in light of complex fit-
ness landscapes with epistatic interactions, meaning that the
result of mutational combinations cannot always be known
based on individual effects. Given the speed of digital evo-
lution, however, we do not always need to predict evolution-
ary trajectories; we can often empirically measure the range
and distribution of possible outcomes. We can even directly
measure historical contingency by conducting replay exper-
iments before and after a particular event (such as one or
more mutations).

Thus far, these analytic replay experiments have been em-
ployed to study the genetic potentiation of complex traits,
such as citrate metabolism in E. coli (Blount et al.l [2008)),
novel receptor usage in Phage A (Meyer et al.l[2012)), and as-
sociative learning in digital organisms (Ferguson and Ofrial
2023). Instead of focusing on the evolution of a particular
target trait, here we apply replay experiments to an idealized
model system to study fundamental evolutionary phenom-
ena.

Adaptive Momentum

The adaptive momentum framework suggests that periods
of disequilibrium resulting from phenomena like selective
sweeps and range expansions can enhance genetic explo-
ration (Bohm et al, 2024). We use analytic replay experi-
ments to investigate this effect in selective sweeps. Consider
the appearance of a beneficial mutation in an asexual spatial
population. If this mutation establishes and is sufficiently
strong, it can trigger a selective sweep where the genotypes
with the beneficial mutation come to dominate the popula-
tion. During the sweep, there will be a boundary between
individuals with the beneficial mutation and those without
(wild type). If advantaged individuals along this boundary
accrue relatively small deleterious mutations, they may still
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have a combined fitness benefit over the wild type. Thus,
individuals along the leading edge of the sweep will have
an increased potential to accumulate deleterious mutations
that, in turn, increase the potential to explore genetic space
and facilitate genetic discovery across fitness valleys. Adap-
tive momentum persists until the wild type is eradicated and
equilibrium is reestablished. However, if during fixation a
new beneficial mutation is discovered, the state of disequi-
librium will persist, thus extending the “momentum win-
dow” (the period of adaptive momentum).

In the work presented here, we create an ideal environ-
ment for adaptive momentum by using a one-dimensional
spatial population evolving on a rising sawtooth fitness func-
tion. We use replay experiments to measure how the state of
the population affects the potential to cross the next fitness
valley. Replay experiments show that adaptive momentum
increases the potential for populations to cross fitness val-
leys, an effect that diminishes over time.

Using simple assumptions about the structure of the lead-
ing edge of a selective sweep, we generated a predictive
model of the potential for valley crossing during adaptive
momentum. While this estimation is highly accurate for
early steps into the fitness valley, it loses accuracy when the
leading edge is deeper in the valley. The time required for
a population to reach deeper mutations in the fitness val-
ley is likely also increasing the number of stochastic events
that cause differences from the assumptions of the model.
Finally, by shuffling organism positions in our population
snapshots we can disrupt population structure. This shuffled
analysis allowed us to verify that the organization of the pop-
ulation, not just its genetic composition, is vital to valley-
crossing potential. Overall, this work refines the frame-
work proposed by adaptive momentum while advancing the
methodology of analytic replay experiments as a tool for
studying historical contingency, exposing sections of both
that are ripe for further study.

Methods
Evolution system

In order to isolate the adaptive momentum effect and keep
computational costs feasible, we used a minimal agent-
based evolution model where each organism’s genome con-
sists of a single integer, with value x. Fitness is based in
a repeated “sawtooth” function, similar to the one used in
(Bohm et al., 2024)), to create a landscape with regular fit-
ness peaks separated by valleys. Each organism is assigned

! Adaptive momentum describes how disequilibrium during
evolution can result in periods of increased mutation buffering.
Such disequilibrium can be caused by several conditions, includ-
ing sweeps, range expansions, and increases in carrying capacity
in both spatial and well-mixed populations. The adaptive momen-
tum framework further considers how the increased potential for
mutational buffering can also affect large scale evolutionary rates
via increased genetic exploration and subsequent genetic discovery.

a quality score (s(x)), and then that score exponentiated to
determine fitness (f(z) = 10°(®)). Score is calculated using
the sawtooth function:

s(x) = WG — (x mod w)D

where G is the gain per peak, D is the decrease per step into
the valley, and w is the valley width (number of mutational
steps from one peak to the next). Effectively, the score func-
tion calculates the quality of the highest peak achieved and
subtracts the cost of the current mutational step into the val-
ley. We used G = 1.0, D = 0.05, and w = 6. This means
that peaks appear every six steps; in this case at x = 6,
z = 12, x = 18, and so forth. We refer to these peaks
by their height, so those three peaks would be p;, p2, and
ps, respectively. We refer to the steps between peaks by the
prior peak and an offset (e.g., x = 17 is p2 + 5, the last step
before p3). Figure |l|illustrates this sawtooth function and
the relevant peaks.

Crossing a valley increases an organism’s fitness by a fac-
tor of 10, and each step into the valley reduces fitness by
~12%, relative to the previous peak. We selected these dras-
tic fitness differences to clearly demonstrate the effect. While
this degree of selective benefit may be rare in biological sys-
tems, cases such as antibiotic resistance can show fitness in-
creases of this magnitude (Gullberg et al., 201 1J).
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Figure 1: The sawtooth function used in this work, with the
four peaks mentioned in this work labeled. Score, s(z), and
fitness are both shown, with fitness being 105(),

We evolved populations of 512 organisms in a one-
dimensional spatial population — a single line of organisms
— that did not wrap. This structure maximizes fixation times
and makes selective sweeps easy to track, as they could only
move left or right. The population evolved via discrete, non-
overlapping generations. To fill positions in the next gen-
eration, we performed rounds of spatial roulette selection,
each involving three organisms: the organism in that posi-
tion in the previous generation and its two immediate neigh-
bors (unless the organism is on the edge, in which case the
roulette is between only two organisms). We then copied the
selected individual to produce the offspring, with a 0.0125
chance to mutate; mutations either increment or decrement
the offspring’s genome value by one. Selective sweeps are
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thus limited to advancing one position in the population per
generation, limiting the growth rate and therefore the fixa-
tion time of a beneficial mutation.

Experiment design

We conducted this work in three stages: 1) we validated
that our model demonstrates adaptive momentum; 2) we ran
“benchmarking” data to create an expectation of how po-
tentiation changes during a momentum window; and 3) we
conducted analytic replay experiments to observe changes
in potentiation in evolved lineages. Here we outline these
experiments in more detail.

Experiment I: Model Validation To ensure that our
model could produce the adaptive momentum effect, we
replicated the primary experiment from (Bohm et al., [2024)
comparing crossing times in populations starting from equi-
librium versus those starting during the disequilibrium of
a previous selective sweep. We ran 500,000 evolutionary
replicates, where each replicate started with 512 organisms
at p; and ran for 5,000 generations. In replicates where po
was discovered, we recorded the generation of discovery and
extended the run duration for another 5,000 generations be-
yond the point of discovery. If ps was discovered before
time ran out, we recorded this time as well. This methodol-
ogy produced two time distributions: time to first crossing
and time between first and second crossing, both capped at
5,000 generations.

Experiment II: Benchmarking The adaptive momentum
framework posits that populations in disequilibrium experi-
ence an increased rate of adaptation. In spatial populations
experiencing a selective sweep, the disequilibrium should
manifest near the leading edge of the sweep. Specifically,
adaptive momentum allows deleterious mutations to accu-
mulate within the advantaged subpopulation along the lead-
ing edge. This temporarily expanded mutant cloud increases
genetic exploration, accounting for an observed increase in
the rate of adaptation.

Mutant Type (N, orgs) Leading Edge (8) Wild Type (N, orgs)
A A

= ~\— -\ ~— ~

Sweep

Figure 2:  Starting layout for experiment II populations,
with three clearly-defined sections: Np “post-sweep” mu-
tant organisms at peak po (left), Ny “wild type” organ-
isms at peak p; (right), and 8 “leading edge” organisms at a
treatment-specific position in the valley past po (middle).

We created idealized scenarios to study the dynamics of
adaptive momentum as they unfold. Each population had
organisms on py sweeping across organisms on pp, with a
well-defined leading edge (Fig. [2). Experimental treatments

used all combinations of how far into the next fitness val-
ley the leading edge started (from © = ps to x = ps + 5),
and how far the sweep had progressed across the population
(from Np = 0, at the beginning of a sweep, to Np = 504
at the end.) We ran each replicate for 768 — Np total gener-
ations; the reduced number for larger Np was used to make
the comparison fair, subtracting off the minimum time it
could have taken to establish /N p post-sweep organisms. For
each condition, we measured how often replicates crossed
the next valley to reach ps.

We recorded the number of replicates that successfully
crossed to ps in each treatment. This measurement provided
an expectation of a population’s potential to cross the valley
based only on the initial state of the leading edge. Addition-
ally, we also ran “shuffled” controls under otherwise identi-
cal conditions, but where we removed population structure
(and thus the notion of a leading edge) by randomly shuf-
fling the organisms before each evolutionary replicate.

Experiment III: Analytic replays of evolved lineages
Finally, we focused on the treatment from Experiment II
that represented the start of a selective sweep; that is, no
post-sweep organisms (Np = 0) and a leading edge that
just made it to po. We ran 500 replicates under these con-
ditions, saving snapshots at each generation, allowing us to
perfectly recreate the population at any time point. We ran-
domly selected 10 replicates that failed to reach ps, 10 ran-
dom replicates that did reach ps (but not further), and all
four replicates that crossed two valleys to reach p,4. For each
of these 24 replicates, we performed 1000 analytic replays
at every fourth generation, restarting evolution from a given
time point with different random seeds to investigate the role
of chance in determining the distribution of potential evolu-
tionary outcomes (Blount et al., 2018). Next, we selected
one representative sample from each of the three categories
to study at high resolution, replaying 10,000 replicates from
every generation.

Using these replays, we recorded the probability that a
replicate would cross the valley to p3 or ps at each time
point. These data allow us to calculate how the crossing
probabilities changed over time. We also ran 10,000 equi-
librium replicates and replayed representative replicates in
the same manner. Finally, just as in the shuffle benchmark-
ing experiment, we performed “shuffled” replays on dise-
quilibrium replicates that crossed a single valley. Specifi-
cally, we shuffled the population before starting each replay
to measure the role of the population’s spatial organization
in crossing potential.

Data and software availability

All code, analyses, summarized data, and figures not in-
cluded in this work are available in the supplemental mate-
rial (Ferguson, 2024). The model was built using the Modu-
lar Agent Based Evolver version 2.0 (MABE2) (https://
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https://github.com/mercere99/MABE2

github.com/mercere99/MABE2). All analyses and
plots were generated using the R statistical computing lan-
guage version 4.1.2 (R Core Team| 2021)) and the ggplot2
(Wickham et al., 2020), dplyr (Wickham et al., [2022),
HMisc (Harrell Jr, 2023)), tidyr (Wickham and Girlich} [2022)
packages.

Results
Validation of adaptive momentum effect

First, we measured the time it took for replicates starting
from a full population of py to cross the valley to ps and,
when relevant, from p3 to ps. Figure BJA shows the timing
distributions of populations that crossed the first valley over
the first 5,000 generations (purple) as well as the timing dis-
tributions of second crossings that occur within 5,000 gener-
ations of a first (orange). We see that the time of first cross-
ing appear uniformly distributed across the 5,000 genera-
tions, while the second crosses are strongly skewed toward
shorter time periods. Indeed, of 500,000 replicates, 6,485
crossed the first valley within 5,000 generations (~1.3%)
with a mean cross time of ~2,569 generations and a median
of 2,602 generations. Based on these values, we would ex-
pect roughly 84 replicates to cross twice (6,485 x 1.3%, or
0.0169% of all 500,000 replicates), but instead we see 902
replicates (~0.18%) cross the second valley, a much higher
rate than expected if the probabilities of first and second
crossing were equal. In addition to a higher than expected
rate of crossing, the mean cross time between first and sec-
ond crossings is ~579 generations and the median cross time
is 401 generations, substantially lower than the first crossing
times. Finally, when we consider only those second cross-
ing times that occurred more than 1000 generations after a
first crossing, we find that the rate of these second crossings
is similar to the first crossing rate (~1.23%). These results
comport with the framework of adaptive momentum. They
show that an initial beneficial discovery can quickly lead
to additional discoveries (during the fixation period), but if
the second discovery does not happen before equilibrium is
reestablished, the rate of valley crossing is better predicted
by the first valley crossing times.

Empirical benchmarks

The empirical benchmark data (Fig. BB) illustrate how the
initial state of the population affects the potential to cross
valleys. As expected, steps further into the valley increase
the probability of crossing, regardless of where the leading
edge is. On the other hand, the probability of crossing de-
creases as the ratio of p, organisms (mutant type) increases
relative to p; organisms (wild type) — as the selective sweep
progresses, fewer opportunities remain for additional mu-
tations to accumulate. While the potential to cross varies
considerably with the type of organisms in the leading edge,
these data clearly show that all conditions describing early

sweep conditions (i.e., having a leading edge and a signif-
icant ratio of the remaining population on p;) substantially
increase the probability of crossing the valley compared to
populations that are close to reaching equilibrium on ps.

We use these results to provide a baseline prediction for
the analytic replay experiments.

Analytic replay experiments

Of our 500 initial replicates to find candidates for replay ex-
periments, four replicates (0.8%) crossed two valleys in the
allotted time, 83 crossed exactly one valley (16.6%), and
the remaining 413 did not cross any valleys (82.6%). We
randomly-sampled 10 no-cross replicates, 10 single-cross
replicates, and took all four double-cross replicates to run
coarse-grained replays. All plots are available in the supple-
ment (Ferguson, [2024)).

From these coarse-grained replays, we selected one repre-
sentative replicate from each category to re-run, conducting
10,000 replay trials at every time point to give a fine-grained
view. For each replayed replicate, we show the potential
of crossing the next valley over time, paired with a Muller
plot (Muller;, |1932) of the initial replicate that was replayed.
Figures ] [5] and [6] show the single-cross, double-cross, and
no-cross replicates, respectively. In each plot, the replay re-
sults are overlaid on an image generated from the benchmark
data. To generate the background image, we treat the bench-
mark data as a lookup function. When we start a replay repli-
cate, we initialize the population using the snapshot from
the target generation of the initial replicate. These snapshots
show that the leading edge does not perfectly advance one
position every generation; there are many generations where
the leading edge either fails to advance or is pushed back one
position by the wild type organisms. To make this compari-
son fair, we find the leading edge in that particular snapshot
and then look up the corresponding expectation values from
the benchmark data. This adjustment ensures that we are
comparing against the correct benchmark data regardless of
the motion of the leading edge.

Overall, the potentiation observed in all three replicates
closely match the benchmark expectations. The potentiation
occasionally increases or decreases suddenly; tracing these
changes to the Muller plots typically shows that these events
correlate to the gain or loss of a mutation at (or near) the
leading edge at that time. For example, the two temporary
peaks in potential in Figure [d] at roughly generations 250
and 375, can be directly traced to the leading edge temporar-
ily dipping to ps + 4. The potentiation at any particular step
in the valley decreases over time, as the selective sweep pro-
gresses and the adaptive momentum window closes. Figure
[6]shows that, while the replicate had substantial potentiation
at times (briefly above 50%), it failed to capitalize before the
window closed. This failure was exacerbated by two leading
mutations from ps+3 to p2 42, the second of which dropped
the potential from over 25% to under 10%, after which the
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Figure 3: (A) Distribution of the number of generations required to cross valleys in the validation experiment. Relative
generations refer to the elapsed time (in generations) for the first cross (purple), and from the first cross to the second cross
(orange). The dashed and solid vertical lines show minimum and maximum fixation times, respectively. (B) Benchmarking
data showing the potential of a leading edge to cross a valley, with a range of leading edge starting positions and values (see
Fig. 2)). Each point represents 10,000 replicates. (C) Shuffled benchmarking data. Each replicate is shuffled prior to evolution,

otherwise identical to center plot.

population never recovers.

All three replicates show periods of potentiation higher
than what our benchmark data would predict given their
leading edge genomic value. The benchmarking data mod-
eled a leading edge of eight organisms, but the Muller plots
show that the leading edge grows and shrinks over time. The
Muller plots show that underprediction is generally associ-
ated with either an expanded leading edge or an excess of in-
dividuals with lower fitness behind the leading edge. We hy-
pothesize that these underpredictions are generally observed
in deeper steps into the valley because of the historical con-
tingency required to reach that point (i.e., to reach ps + 5 the
leading edge must have passed through ps + 4, which may
still exist behind the leading edge).

For comparison, we also ran 10,000 replicates that started
at equilibrium (i.e., not in a momentum window). Of those,
we replayed the one replicate that crossed twice, 10 ran-
domly sampled replicates from 19 that crossed once, and 10
random replicates from the 9,980 that failed to cross. Figure
[7] shows the replicate that crossed twice. The first cross-
ing in this replicate occurred quite early, crossing the val-
ley on generation 168. However, the potential before cross-
ing is similar to all first-cross replicates: while the potential
in an adaptive momentum window starts at ~17%, the po-
tential for replicates outside momentum windows starts at
~0.2%. This low potential continues for the first 143 gener-
ations, followed by 16 generations with an average potential
of ~1.8%, four generations between 15% and 20%, and then
the cross. This pure chance, “all or nothing” potentiation is
not unique to this replicate; the same dynamic can be seen

in the ten other successful replicates we analyzed
2024).

Finally, we also show the potentiation of crossing the sec-
ond valley, which in some cases is realized (Figs. E] and
[7), and other times is not (Figs. [4] and [6). As potentia-
tion is probabilistic in nature, the potential to cross the sec-
ond valley is the probability of crossing the first valley from
the current state of the population times the probability of
crossing a second valley from a naive starting position (i.e.,
the elevated potentiation of a population at the beginning
of a sweep). We see this dynamic early in the replays — in-
creases in first-cross potential are reflected, at smaller scales,
in second-cross potential, with a much larger increase upon
successful crossing of the first valley in Figures[d]and[5] This
result is consistent with the adaptive momentum framework,
which posits that the discovery of a new peak will initiate a
new adaptive momentum window. Strikingly, this same dy-
namic holds true for Figure [7]— while the replicate did not
start in a momentum window, the first cross creates a win-
dow which increases the potential of the second cross.

Shuffled population experiments

To test the importance of population structure for potentia-
tion, we repeated the benchmarking and replay experiments
with shuffled populations. In both cases, we kept the exper-
iments identical except for an additional shuffle step: before
starting a replicate, we shuffled the order of organisms in the
population and then proceeded with evolution as normal.
The shuffled benchmark data in Figure[3|C shows that only
populations with a leading edge of p» 4 5 are able to main-
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Figure 4: Top plot: Analytic replay data for a represen-
tative replicate that crossed one valley during a momentum
window, overlayed on baseline data. Lines show the proba-
bility of crossing both the first valley (orange line; initially-
higher) and the second valley (yellow line; initially-lower).
The background shows the expected potential to cross (as
shown in Fig. E[B); data here are shifted to align with the re-
alized leading edge position. Bottom plot: A Muller plot of
all organisms in the original 1D population over time. Dark
colors show descent into valleys, with hue identifying the
valley being crossed. In both plots, vertical dashed lines
show initial valley crosses. Colors in the legend apply to
all plots.

tain greater than a 10% chance to cross if the leading edge
has swept more than half the population. Two differences
can decrease crossing potential: 1) multiple leading edges
can form, allowing faster fixation and 2) the eight leading-
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Figure 5: The analytic replay data for a representative repli-
cate that crossed two valleys during a momentum window.
See Figure [ for details and legend.

edge organisms are more likely to encounter higher-fitness
mutant-type organisms and thus be purified faster.

A representative sample from the single-cross replicates is
shown in Figure[8] The replay data indicate that potential to
cross remains relatively low, never reaching a 20% chance,
until a critical mass of nearly-crossed organisms skyrock-
ets the potential from 9.2% to 100%. The earlier spikes in
potentiation always correspond to the appearance of a sin-
gle organism that is one step away from crossing the val-
ley, which was then lost in the original population. These
trends are consistent across all 10 replicates that were re-

played 2024).
Discussion and Conclusion

Potentiation exhibits adaptive momentum

In this work, we have corroborated adaptive momentum’s

benefit to valley crossing (as outlined in (Bohm et al.|[2024))
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Figure 6: The analytic replay data for a representative repli-
cate that failed to cross a valley during a momentum win-
dow. See Figure [ for details and legend.

and expanded our understanding of the dynamic. Our ini-
tial experiments demonstrated that our system can undergo
adaptive momentum, and that disequilibrium is the key
driver. However, our main goal in this paper is to provide an
alternate vantage point from which to view the dynamics of
adaptive momentum. While the original paper validated the
effect via aggregated data, here we analyze the underlying
dynamics in action on individual populations by quantifying
potentiation via replay experiments.

We have shown that populations outside of momentum
windows must rely on chance alone to cross a valley. During
these “equilibrium” periods, early mutations into the valley,
although required for a valley crossing, have no substantial
impact on the population’s probability of crossing. Con-
versely, populations in momentum windows immediately
see a drastically higher chance to cross, and every mutation
in the leading edge is either potentiating or anti-potentiating,
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Figure 7: Top plot: The analytic replay data for the sole
replicate that did not start in a momentum window, but still
managed to cross a valley, and indeed crossed twice. The
red line shows the potential to cross the first valley, while
the orange line shows the potential to cross the second val-
ley, exhibiting the hallmarks of adaptive momentum due to
the first cross. Bottom plot: a Muller plot of the original
population, like in Figure ]

depending on the direction. This result is highlighted in Fig-
ure[7] where the first cross was pure chance while the second
cross was driven by adaptive momentum. This work is only
a beginning; future work should apply these techniques to
examine the role of adaptive momentum in more complex
and realistic fitness landscapes.

The leading edge in a spatial selective sweep
determines potentiation

The adaptive momentum framework posits that disequilib-
rium in a population can reduce the selection pressure on

the advantaged subpopulation (Bohm et al.,[2024). In spatial

populations, disequilibrium is focused at the leading edge
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Figure 8: The black line (bottom) shows the potential for
a shuffled population to cross a valley. The orange line
(top) shows the standard potential for the population to cross
(same data as Fig. E[) The shuffled line consists of 1,000
samples every 4 generations.

of selective sweeps, where advantaged mutants encroach on
the wild type. Indeed, we observe that the genotype of the
organism at the leading edge of the sweep is a strong predic-
tor of potentiation. Moreover, as we can see in the Muller
plots, there are often mutated organisms lagging the leading
edge. When the leading edge is further into the valley, those
lagging organisms have a non-negligible chance to accumu-
late sufficient mutations to finish crossing the valley, thus
increasing the potential.

We aimed to create the simplest system for studying val-
ley crossing in spatial populations. In these one-dimensional
populations, our artificially-started sweeps have exactly one
leading edge. These edges become more complex in two-
dimensional digital systems and only increase in complexity
moving toward more natural systems. While the identifi-
cation and measurements of the leading edge may become
more difficult, we expect similar dynamics to hold. It is
critical that we continue to improve our understanding of
adaptive momentum in these simple systems to build a solid
theoretical foundation.

Population heterogeneity and structure affect
potentiation

Previous experiments have conducted analytic replays start-
ing from clonal populations (Blount et al., |2008}; Ferguson
and Ofria, [2023). Here, however, we used perfect popula-
tion snapshots that record every organism in every genera-
tion. Our technique provides a more fine-grained look into
how potentiation changes. Furthermore, previous work has
often used the most abundant genotype at a time point to
seed replay experiments. Across all of our experiments, the

most abundant genotype was always on one of the peaks.
Replays looking at the potential of the first cross would see
effectively zero probability for p; and ps and 100% proba-
bility for ps and p4, which have already crossed, missing all
nuance and change in this potential.

The nuance gained by replaying population snapshots
provides important insight into using analytic replay exper-
iments, and puts the large jumps in potentiation seen in
previous work into question (Ferguson and Ofrial [2023).
While those large jumps in potentiation are valid, they are
likely missing important intermediate genotypes or popula-
tion dynamics. In effect, they show genetic effects isolated
from effects of population structure. Future work looking to
leverage replay experiments should be aware that population
structure and composition can affect evolutionary outcomes,
and should thus carefully consider how replays are initial-
ized.

Further, by shuffling the population snapshots we have
shown that it is not just the portion of the population with
each genotype that matters, but also the structural rela-
tionships and interactions among the organisms (Figure [§).
Other computational studies will likely be needed to tease
apart when and how this organization matters as perfectly
preserving structure and composition of natural populations
for so many replicates is currently impossible. As such,
we should leverage computational models to develop tech-
niques possible in both digital and natural populations, pos-
sibly finding a middle ground between a single clonal sam-
ple and full population snapshots.

Outlook

This work not only provides evidence to support our un-
derstanding of adaptive momentum, but further clarifies the
underlying mechanisms. By quantifying the potentiation of
valley crosses and relating this measure to population com-
position and structure, we have provided insights into the
historical contingencies and long-term trajectories of popu-
lations experiencing adaptive momentum. Further, we ad-
vance the methodology of analytic replay experiments by
conducting them at a greater scale than previously seen,
demonstrating a new use case, and leveraging perfect pop-
ulation snapshots to seed the replay experiments. These
advances combine to show that replay experiments can ex-
tend genetic potentiation to include the effects of popula-
tion dynamics. All together, this work constitutes both a
step toward better understanding adaptive momentum and a
methodological refinement of replay experiments for under-
standing historical contingency.

Acknowledgements

We thank the reviewers and the MSU BEACON Ilab for
comments. This work was supported by the U.S. National
Science Foundation (DBI-0939454) and compute resources
from the MSU Institute for Cyber-Enabled Research.

¥20Z Joquialdag /g uo Jasn ALISHIAINN ILYLS ATTIVA ANVHD Aq 4pd L0800 € BSI/ELOLIYZ/69/9€/720ZIes!jpd-sBuipaadoid)jes)/npa yiwjoaup//:diy woly papeojumoq



References

Blount, Z. D., Borland, C. Z., and Lenski, R. E. (2008). Historical
contingency and the evolution of a key innovation in an ex-
perimental population of Escherichia coli. Proceedings of the
National Academy of Sciences, 105(23):7899-7906.

Blount, Z. D., Lenski, R. E., and Losos, J. B. (2018). Contingency
and determinism in evolution: Replaying life’s tape. Science,
362(6415):eaam5979.

Bohm, C., Ragusa, V. R., Oftria, C., Lenski, R. E., and Adami,
C. (2024). Reduced selection during sweeps lead to adap-
tive momentum on rugged landscapes. bioRxiv : the preprint
server for biology.

Ferguson, A. J. (2024). ALife 2024 Supplement. Zenodo
and Github. https://doi.org/10.5281/zenodo.
11507982

Ferguson, A.J. and Ofria, C. (2023). Potentiating Mutations Facil-
itate the Evolution of Associative Learning in Digital Organ-
isms. In ALIFE 2023: Ghost in the Machine: Proceedings of
the 2023 Artificial Life Conference. MIT Press.

Gould, S. J. (1990). Wonderful Life: The Burgess Shale and the
Nature of History. WW Norton & Company.

Gullberg, E., Cao, S., Berg, O. G., Ilback, C., Sandegren, L.,
Hughes, D., and Andersson, D. I. (2011). Selection of re-
sistant bacteria at very low antibiotic concentrations. PLoS
pathogens, 7(7):¢1002158.

Harrell Jr, F. E. (2023). Hmisc: Harrell Miscellaneous.

Meyer, J. R., Dobias, D. T., Weitz, J. S., Barrick, J. E., Quick, R. T.,
and Lenski, R. E. (2012). Repeatability and contingency in
the evolution of a key innovation in phage lambda. Science,
335(6067):428-432.

Muller, H. J. (1932). Some Genetic Aspects of Sex. The American
Naturalist, 66(703):118-138.

R Core Team (2021). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing,
Vienna, Austria.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi,
K., Wilke, C., Woo, K., Yutani, H., and Dunnington, D.
(2020). Ggplor2: Create Elegant Data Visualisations Using
the Grammar of Graphics.

Wickham, H., Francois, R., Henry, L., and Miiller, K. (2022).
Dplyr: A Grammar of Data Manipulation.

Wickham, H. and Girlich, M. (2022). Tidyr: Tidy Messy Data.

¥20Z Joquialdag /g uo Jasn ALISHIAINN ILYLS ATTIVA ANVHD Aq 4pd L0800 € BSI/ELOLIYZ/69/9€/720ZIes!jpd-sBuipaadoid)jes)/npa yiwjoaup//:diy woly papeojumoq


https://doi.org/10.5281/zenodo.11507982
https://doi.org/10.5281/zenodo.11507982

	Introduction
	Replay Experiments and Evolutionary Prediction
	Adaptive Momentum

	Methods
	Evolution system
	Experiment design
	Data and software availability

	Results
	Validation of adaptive momentum effect
	Empirical benchmarks
	Analytic replay experiments
	Shuffled population experiments

	Discussion and Conclusion
	Potentiation exhibits adaptive momentum
	The leading edge in a spatial selective sweep determines potentiation
	Population heterogeneity and structure affect potentiation
	Outlook

	Acknowledgements

