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Introduction
Epistasis refers to multiple genes interacting to create a sin-
gle phenotype, and it is a key component of complex genetic
architectures. If loci are epistatic, the fitness effects of indi-
vidual mutations at each loci may not fully determine their
combined fitness effect. Determining how strong epistatic
interactions are at individual sites or for individual genes
is therefore an important problem in evolutionary biology
if we are to understand fitness landscapes. However, chal-
lenges arise when measuring epistatic load both because ab-
solute fitness is difficult to measure in biological organisms,
and because we do not have a perfect baseline expectation
against which to compare epistatic interactions.

Fitness in biological systems is measured in relation to the
other organisms in the population (Elena and Lenski, 1997;
Trindade et al., 2009); the organisms with highest fitness are
those which produce the most offspring in comparison to
others in the population. However, these comparative fit-
nesses are inexact and can be confounded by organismal in-
teractions and environmental changes.

Furthermore, even when exact fitness values are known, it
can be challenging to predict how the fitness effects of two
non-interacting mutations should be combined to provide a
baseline for epistasis. For example, we might model fitness
contributions from non-epistatic sites as either additive or
multiplicative; both models are commonly used as baselines,
but provide very different results (Puniyani et al., 2004).

In order to address these challenges, we propose a rank-
based epistasis metric that avoids the requirement of abso-
lute fitness measurements of organisms, focusing instead on
how perturbations to one site affect the ordering of fitness
contributions from other sites.

Methods
Rank Epistasis Metric
Evaluating a target locus with rank epistasis consists of:

1. Measure and rank the fitness of organisms in a wild type
population. The means by which fitness is determined
depends on the target system.

2. Apply a mutation to the target locus and repeat step 1. We
will now have a new ranking of the same population, but
in combination with the target mutation.

3. Calculate the edit distance between the two rankings. Us-
ing the organism rankings from steps 1 and 2 to create
ranked lists of individuals, calculate the minimum num-
ber of adjustments that need to be made to put the lists in
the same order (edit distance).

4. Repeat step 2 and 3 for all distinct mutations at the target
locus. We can then average these results to measure how
meaningfully the target locus interacts with other loci in
the genome.

This procedure allows us to calculate the epistasis at a sin-
gle locus, without needing to first identify baseline interac-
tions among loci. This per-locus epistasis can be aggregated
to measure epistasis across a whole organism (as is common
in other epistatic measurements (Elena and Lenski, 1997;
Franklin et al., 2019)), or for a single locus across a popula-
tion at a point in time.

Fitness Landscapes
To evaluate the efficacy of this metric, we used three distinct
classes of fitness landscapes based on the NK-landscape
model (Kauffman and Levin, 1987). Here, N is the num-
ber of sites, and K is the number of interaction each bit has
with other genes. K is thus one way to quantify epistasis.

We chose this model because the degree of interaction be-
tween sites in the genome can be adjusted, allowing for an
easy comparison across different levels of epistatic interac-
tion. We use a classic NK landscape, an oscillatory NK land-
scape (”NK treadmill”), and an NK landscape with narrow,
high peaks and broad, flat peaks (”fit and flat”) as in Wilke
et al. (2001).
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Comparison Metrics
We compare our metric to existing measures of epistasis dis-
cussed in Elena and Lenski (1997). A strong correlation
between our rank-based metric and their interaction-based
metric, β, would provide evidence that we are directly mea-
suring epistatic activity and not a related signal.

Evolutionary System and Analysis Pipeline
We conducted experiments in this paper using the Modu-
lar Agent Based Evolver framework (MABE) (Bohm et al.,
2017). All analyses were done using the R statistical
computing language (R Core Team, 2017). Plots were
created using the ggplot2 R package (Wickham, 2009).
Source code, data analyses, and additional figures are avail-
ble as supplemental material at https://github.com/
alackles/ALIFE-2020-Rank-Epistasis.

Results
Convergence muddles rank-based metric The fit and
flat fixed NK landscape provides little challenge to evolving
organisms. The extreme case sees a population converging
to a single genotype, and indeed this is often observed with
the lowest mutation rate. In this case, mutating a single lo-
cus may cause a shift in fitness, but that shift is seen in all
organisms and thus the ranking does not change. This yields
an edit distance of zero. Future work must be conducted to
disentangle these effects.

Edit distance varies as expected with K Unlike fixed
NK landscapes, the classic, randomly-generated landscapes
provide considerable levels of noise and are more of a chal-
lenge for the evolving populations. These attributes make
examining the rank-based metric more feasible in this do-
main, as populations are less likely to converge en masse.

Edit distance is stratified according the value of K, as ex-
pected (Fig 1). This result provides early evidence that the
metric measures some facet of epistasis.

Rapidly changing environments increase epistasis mea-
surement The NK treadmill landscape requires a veloc-
ity parameter, which determines how fast the landscape
changes. While an increase in velocity results in an increase
in rank epistasis across a population, we hypothesize this
is not a result of increased epistasis, but rather a decrease
in convergence. As the landscape quickly shifts, the pop-
ulation must continually adapt. This continuous adaptation
thus maintains diversity.

Rank epistasis correlates with traditional measures when
not converging We also compared the rank epistasis met-
ric to the calculation described in (Elena and Lenski, 1997).
At higher mutation rates we observe a positive correlation
between the rank-based metric and the more traditional epis-
tasis measurement. These correlations are weakly positive
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Figure 1: Boxplots showing the edit distance of the rank-
based metric at several points in the evolutionary run and at
three levels of K (3, 5, 10). Each boxplot represents the 50
replicates of that treatment at each time point.

for at low mutation rates and moderately to strongly positive
for high mutations rate.

Conclusion
Here we present preliminary results for a binary genome
model. We found this model to closely track existing mod-
els of epistatic interactions, including K on an NK landscape
and the parameter β from Elena and Lenski (1997). This
shows promising results for potential future developments
of this rank-based epistasis metric.

A model that allows for more single-step mutations per
locus is under development. Such a model would be ap-
plicable to many questions in biological systems, especially
as generating landscapes of single-step mutations is coming
within reach of wet-lab systems. Applying our rank epistasis
metric to rapidly adapting biological populations can help us
understand which sites are biologically important, and how
these sites interconnect with the rest of the genome.
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